Interpolation by Smooth Functions under Restrictions on the Derivatives

U. Hornung
Institut für Numerische und Instrumentelle Mathematik Unicersität Münster, 4400 Münster, West Germany

Communicated by T. J. Rirlin
Received September 2, 1978

Introduction

Interpolation by convex splines has recently attracted some attention, cf. McAllister et al. [4], McAllister and Roulier [5], Passow and Roulier [7] and Pence [8]. In this paper it is shown that the smoothest convex interpolating function to convex data is a cubic spline. The proof of this result is based on the degree theory of mappings in finite dimensional Euclidian space, cf. Ortega and Rheinboldt [6, Chap. 6]. The similar problem of finding the smoothest monotone interpolating function to monotone data was solved in Hornung [3].

1. The Problem and Main Results

Let a set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of fixed data points in the interval $[a, b]$ with $a=x_{n}<x_{1}<\cdots<x_{n}<x_{n-1}=b, n \geqslant 1$, and some boundary data $z_{0}, z_{n-1} \in \mathbb{R}$ be given. The space of functions on $[a, b]$ having square integrable derivatives of the k-th order is denoted by $H^{\wedge}(a, b)$. It is a Hilbert space with norm

$$
u^{i}=\left(\sum_{j=0}^{k} \quad D^{j} u \cdot \cdot_{L^{2}(a . b)}^{2}\right)^{12} .
$$

(1.1) Definition. For an integer number k with $2 \leqslant k \leqslant n-2$, a real number γ, and a vector $z=\left(z_{1} \ldots ., z_{n}\right)^{T} \in \mathbb{R}^{n}$ of interpolation data, a function u is called admissible, if $u \in H^{i}(a, b)$ satisfies $u\left(x_{i}\right)=z$, for $i=0, \ldots, n+1$ and $D^{\prime} u=\gamma$ a.e. on $[a, b]$. The set of all admissible functions is denoted by M, .
(1.2) Problem. A minimizer of the functional $F(u)=\frac{1}{2} \int_{a}^{h}\left(D^{n} u(x)\right)^{2} d x$ on the set $M_{\gamma}{ }^{\prime}$ of admissible functions is called a solution of problem $A^{\prime \prime}$.
(1.3) Definition. (a) We denote by p^{k} the space of all splines p on $[a, b]$ of degree $k-1$ with knots in X, which satisfy $D^{j} p\left(x_{i}\right)=0$ for $i=0$, $i=n-1$ and $j=0, \ldots, k-2$.
(b) For $p \in P^{k}$ and $x \in \mathbb{R}$ we set

$$
p_{x}(x)= \begin{cases}p(x) . & \text { if } p(x) \geqslant x \\ \text { otherwise }\end{cases}
$$

(c) We say that a function u satisfies condition $C_{\gamma^{k}}$, if there is a $p \in P^{i}$ with $D^{k} u=p$, on $[a . b]$.

Theorem 1. If for a given data vector $z \in \mathbb{R}^{n}$ there is an admissible function, problem $A_{\gamma}{ }^{k}$ has a unique solution. For an admissible function to solve problem $A_{\gamma}{ }^{k}$ condition $C_{\gamma}{ }^{k}$ is sufficient.
(1.4) Definition. (a) For $z \in \mathbb{R}^{n}$ we denote by $\Delta(z)=q=\left(q_{1}, \ldots, q_{n}\right)^{T} \in$ \mathbb{R}^{n} the vector of second difference quotients

$$
q_{i}=\frac{2}{x_{i-1}-x_{i-1}}\left(\frac{z_{i+1}-z_{i}}{x_{i+1}-x_{i}}-\frac{z_{i}-z_{i-1}}{x_{i}-x_{i-1}}\right)
$$

(b) A data vector $z \in \mathbb{R}^{n}$ is called γ-convex, if $\Delta(z)$ is an element of the set $Q_{\%}=\left\{\left(q_{1}, \ldots, q_{n}\right)^{T} \in \mathbb{R}^{n^{\prime}} q_{i}>\gamma\right.$ for $i=1 \ldots . . n^{\prime}$.

Theorem 2. Let $z \in \mathbb{R}^{n}$ be a γ-convex data vector. Then problem $A_{\gamma}{ }^{2}$ has a unique solution. For an admissible function to solve problem $A_{\gamma}{ }^{2}$ condition $C_{\gamma}{ }^{2}$ is necessary and sufficient. The solution is a cubic spline having at most

$$
m(n)= \begin{cases}3 \frac{n-1}{2}, & \text { if } n \text { odd } \\ 3 \frac{n}{2}, & \text { if } n \text { even }\end{cases}
$$

$k n o t s$ in (a, b) : it depends continuously on the data z.
Since the interpolating natural spline of degree $2 k-1$ with knots in X satisfies condition $C_{3}{ }^{k}$ if $-\beta$ is sufficiently large, theorems 1 and 2 are generalizations of the well known minimal properties of natural splines. First we prove theorem 1.
(1.5) Lemma. The functional F is Fréchet-differentiable on $H^{k}(a, b)$,
strictly convex on $M_{\gamma}{ }^{k}$ and coercive over $M_{\gamma}{ }^{k}$, i.e. $\lim F(u)=+\propto$ holds for $\|u\| \rightarrow \infty$ and $u \in M_{\gamma}{ }^{k}$.

Proof. If

$$
\left\langle F^{\prime}(u), \varphi^{\prime}\right\rangle=\int_{a}^{b} D^{k} u(x) D^{k} \varphi(x) d x
$$

we have

$$
F(u \div \varphi)-F(u)-\left\langle F^{\prime}(u), \varphi\right\rangle=\frac{1}{2} \int_{a}^{b}\left(D^{k} \varphi(x)\right)^{2} d x=a(\dot{\varphi})
$$

for $u, \varphi \in H^{k}(a, b)$, i.e. F^{\prime} is the Fréchet-differential of F. For any $u, v \in M_{y}{ }^{k}$, $u \neq v$ we have

$$
\left\langle F^{\prime}(u)-F^{\prime}(v), u-v\right\rangle=\int_{a}^{b}\left(D^{k}(u-v)(x)\right)^{2} d x
$$

since $u\left(x_{i}\right)=v\left(x_{i}\right)=z_{i}$ for $i=0, \ldots, n-1$, and $k \leqslant n-2$, this integral is positive. Hence F is strictly convex on $M_{\gamma}{ }^{k}$, cf. Ekeland/Temam [2, Chap. I, Prop. 5.4 and 5.5]. Let \bar{u} be a polynomial of degree $k-1$, which interpolates exactly k data $\left(x_{i}, z_{i}\right), i \in I \subset\{0, \ldots, n+1\}$. Then for $: \mid u \| \rightarrow \infty$ we have $\mid u-\bar{u} \| \rightarrow \infty$. On the subspace U of $H^{k}(a, b)$ consisting of those functions \tilde{u}, for which $\tilde{u}\left(x_{i}\right)=0$ for $i \in I$, the norm

$$
\left(\int_{a}^{b}\left(D^{k} \tilde{u}(x)\right)^{2} d x\right)^{1 / 2}
$$

is equivalent to the norm induced from $H^{k}(a, b)$. Therefore $u ; \rightarrow \infty$ implies

$$
F(u)=\frac{1}{2} \int_{{ }_{c}}^{b}\left(D^{k} u(x)\right)^{2} d x=\frac{1}{2} \int_{a}^{b}\left(D^{k}(u-\bar{u})(x)\right)^{2} d x \rightarrow \infty .
$$

i.e. F is coercive over $M{ }_{\gamma}{ }^{k}$.

Proof of theorem 1. Since $M_{\gamma}{ }^{k}$ is nonvoid, closed and convex, existence and uniqueness of a minimizer follow from (1.5), cf. Ekeland/Temam [2, Chap. II, Prop. 1.2]. Let $u \in M_{\gamma}{ }^{k}$ satisfy condition $C_{\gamma}{ }^{k}$, and $p \in P^{k}$ be chosen according to (1.3c). Then from the proof of (1.5) we have

$$
\left\langle F^{\prime}(u), \varphi\right\rangle=\int_{a}^{b} p_{\gamma}(x) D^{k} \varphi(x) d x
$$

for any $\varphi \in H^{k}(a, b)$. If p is extended by zero outside $[a, b]$, and $\lambda_{i}=D^{k-1}$ $p\left(x_{i}+0\right)-D^{k-1} p\left(x_{i}-0\right)$ for $i=0, \ldots, n \perp 1$, integration by parts yields

$$
\int_{a}^{b} p(x) D^{k} \varphi(x) d x=(-1)^{k} \sum_{i=0}^{n+1} \lambda_{i} \varphi\left(x_{i}\right)
$$

hence

$$
F^{\prime}(11) \cdot q=(--1)^{\prime} \sum_{i=1}^{n} \lambda_{i}^{1} \lambda_{i}\left(x_{i}\right)-\int_{\ldots}^{\prime \prime}\left(p_{i}(x)-p(x)\right) D^{2} q(x) d x
$$

holds for $q \in H^{\prime \prime}(a . b)$. For $c \in M . .4$ we have $c\left(x_{i}\right)==u\left(x_{i}\right)$ for $i=0 \ldots, n-1$. therefore

$$
\therefore F^{\prime}(u), v-u,=\int_{\|}^{b}(p,(x)-p(x))\left(D^{u} c(x)-p_{y}(x)\right) d x .
$$

It is easy to see that this integral is nonnegative. Since $p,-p=0$, we have to consider only an $x \in[a, b]$, for which $p_{\gamma}(x)-p(x) \because 0$, i.e. $p(x)<\gamma$ and $p_{\gamma}(x)=\gamma$. From $D^{H} v(x) \geqslant \gamma$ for almost all $x \in[a, b]$ we deduce

$$
F^{\prime}(u), v-u \quad 0
$$

for any $v \in M_{y}{ }^{k}$. Therefore. u is a minimizer of F on $M_{\vartheta}{ }^{1}$. cf. Ekeland and Temam [2, Chap. II, Prop. 2.1].

The remainder of the paper is devoted to the proof of theorem 2. The first step is the demonstration that γ-convexity of a data vector z implies the existence of an admissible function.
(1.6) Lemma. If $z \in \mathbb{R}^{n}$ is γ-convex, then there is a function $c \in C^{\alpha}[a, b]$ with $c\left(x_{i}\right)=z_{i}$ for $i=0 \ldots . \ldots-1$ and $D^{2} v \cdot \gamma$ on $[a, b]$: the set $M{ }^{2}$ is nonroid.

Proof. Let $q=\left(q_{1}, \ldots . q_{n}\right)^{T}=\Delta(z)$ and $\bar{\gamma}$ be chosen such that $q, \because \bar{\gamma} \cdots \gamma$ for $i=1, \ldots, n$. Then we define

$$
s_{i-12}=\frac{z_{i-1}-z_{i}}{x_{i-1}-x_{i}}, \quad i=0, \ldots n,
$$

and

$$
\kappa_{r}=\frac{s_{i-1} \underline{2}-s_{i-1} \underline{2}}{x_{i-1}-x_{i-1}}-\frac{\bar{\gamma}}{2}, \quad i=1, \ldots n .
$$

Since $q \in Q_{\bar{\gamma}}$, we have $\kappa_{2}=0$. For

$$
\begin{gathered}
\kappa_{0} \cdot \kappa_{n-1}=1, \\
\sigma_{0}=s_{12}-\left(x_{1}-x_{0}\right)\left(\frac{\bar{\gamma}}{2}-1\right) . \\
\sigma_{1}-\frac{1}{x_{i-1}-x_{i-1}}\left(\left(x_{i-1}-x_{1}\right) s_{1}: 2-\left(x_{1}-x_{;-1}\right) s_{i+1}\right), i \cdots I_{\ldots} h,
\end{gathered}
$$

and

$$
\sigma_{n+1}=s_{n+1 / 2}-\left(x_{n+1}-x_{n}\right)\left(\frac{\bar{\gamma}}{2}-1\right)
$$

we obtain

$$
\frac{\sigma_{i-1}-\sigma_{i}}{x_{i-1}-x_{i}}-\bar{\gamma}=\kappa_{i}-\kappa_{i-1}>0
$$

for all $i=0, \ldots, n$. For any $\eta \in(0,1)$ a nondecreasing function $\psi_{n} \in C^{x}[0,1]$ can be chosen such that $\psi_{\eta}(0)=0, \psi_{\eta}(1)=1, D^{j} \psi_{r_{r}}(0)=D^{j} \psi_{\eta}(1)=0$ for all $j=1,2, \ldots$, and $\int_{0}^{1} \psi_{n}(t) d t=\eta$. We define

$$
\begin{aligned}
\eta_{i} & =\frac{\kappa_{i}}{\kappa_{i}-\kappa_{i-1}}, \\
w_{i}(x) & =\left(\sigma_{i-1}-\sigma_{i}-\bar{\gamma}\left(x_{i-1}-x_{i}\right)\right) \psi_{\eta_{i}}\left(\frac{x-x_{i}}{x_{i-1}-x_{i}}\right)+\bar{\gamma}\left(x-x_{i}\right)
\end{aligned}
$$

and

$$
r_{i}(x)=z_{i}+\sigma_{i}\left(x-x_{i}\right)+\int_{x_{i}}^{a} w_{i}(\xi) d \xi
$$

for $i=:=0, \ldots, n$. Now we have $v_{i} \in C^{x}\left[x_{i}, x_{i-1}\right]$ and $v_{i}\left(x_{l}\right)=z_{l}, D v_{i}\left(x_{l}\right)=\sigma_{l}$, $D^{2} v_{i}\left(x_{i}\right)=\bar{\gamma}, D^{j} v_{i}\left(x_{l}\right)=0$ for $j=3.4 \ldots, l=i, i+1$ and $D^{2} v_{i} \geqslant \bar{\gamma}$ on [x_{i}, x_{1-1}]. Therefore the function

$$
r(x)=c_{i}(x) \text { for } x \in\left[x_{i}, x_{i-1}\right]
$$

has the desired properties.
In the proof of theorem 2 the necessity of condition $C_{\gamma}{ }^{2}$ remains to be shown. As a preparation we reformulate this condition as an operator equation.
(1.7) Definition. (a) Let $r_{0}=r_{n-1}=0$. For a vector $r=\left(r_{1}, \ldots, r_{n}\right)^{T} \in$ \mathbb{R}^{n} we denote by $\Pi(r)=p \in P^{2}$ the polygonal function on $[a, b]$ with knots in X, for which $p\left(x_{i}\right)=r_{i}$ holds.
(b) Let G be Green's function for the differential operator D^{2} on $[a, b]$ with boundary conditions $u(a)=u(b)=0$. i.e.

$$
\left.G(x, t)=\frac{1}{b-a} \int(x-b)(t-a) . \quad \text { if } a \leq t=x-b\right)(t-b) . \quad \text { if } a \leqslant x<t<b .
$$

Then for $p \in P^{2}$ and $x \in \mathbb{R}$ we denote by $\Gamma_{x}(p)=u$ the function on $[a, b]$ defined by

$$
u(x)=\frac{1}{b-a}\left((b-x) z_{0}+(x-a) z_{n-1}\right)-\int_{\|}^{b} G\left(x . t \mid p_{2}(t) d t\right.
$$

(c) For a function u on $[a, b]$ let $A(u)=$ be the vector $\left(z_{1}, \ldots, z,\right)^{T}=\vec{P}$. with $z, \cdots(x$,$) for i$. I..... n.
(d) For $1=\mathbb{R}$ we define $S_{2}=\Gamma_{,} \Pi$ and $T \ldots .=A S_{2}$.
(1.8) Corollary. If $==\mathbb{R} r$ is γ-concex. q ... $\Delta(z), r \in \mathbb{R}^{\prime}$, and $T(r) \quad q$. then $u=S(r)$ is the solution of problem $A .{ }^{2}$.

Proof. Since $\lambda: \mathbb{F}^{\prime \prime} \rightarrow \mathbb{R}^{\prime \prime}$ is a regular affine mapping. we have $=.1$ $S_{\gamma}(r) \cdots A(u)$. i.e. $u(x)=$,$z , for i=0 \ldots, n-1$. For $p=\Pi(r)$ we obtain from (1.7b. d) $u=\Gamma_{,}(p)$ and $D^{2} u=p_{\gamma}=\gamma$ on [a.b]. Evidently u is admissible and condition $C_{.}{ }^{2}$ is satisfied. According to theorem 1 the function u solves problem A. ${ }^{2}$.

2. The Homotopy

In this paragraph we study the operator family T_{2}. We begin with a well known representation of the second difference quotient.
(2.1) Lemma. (a) If

$$
\omega_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i}-x_{1-1}}, & \text { for } x_{i-1} \because x: x_{i} \\ \frac{x_{1}-1}{x_{i-1}-x_{i}} & \text { for } x_{i}<x \therefore x_{i-1}\end{cases}
$$

$r \in \mathbb{R}^{n}, q=T_{2}(r)$, and $p=\Pi(r)$, we have

$$
q_{1} \quad-\frac{2}{x_{1}-x_{1}} \int_{x_{1}, 1}^{x_{i-1}} p_{2}(x) \omega_{i}(x) d x
$$

(b) If $r_{j} \because$ a for $j=i-1, i . i-1$, then

$$
q:=\frac{1}{3} \frac{x_{1}-x_{i}}{x_{i 1}-x_{1-1}} r_{i-1}-\frac{2}{3} r_{1}+\frac{1}{3} \frac{x_{i-1}-x_{1}}{x_{i}-x_{1-1}} r_{i-1} .
$$

Proof. Since

$$
q_{1}=2 \Delta^{2}\left(x_{t-1} \cdot x_{i} \cdot x_{t-1}\right) \Gamma_{2}(p) .
$$

formula (a) follows from

$$
A_{1}{ }^{2}\left(x_{1-1}, x, x, 1\right)(x-t) \quad \frac{\omega,(t)}{x, 1-x, 1}
$$

according to Peano's theorem on the representation of linear functionals, cf. Werner:Schaback [9, example 4.5]. Formula (b) is a direct consequence of (a).
(2.2) Lemma. Let $r \in \mathbb{R}^{n} . T_{n}(r)=q$, and $-\rho \leqslant-\beta \leqslant a \leqslant \rho_{i} \sigma,-\rho<\sigma$.
(a) If $r_{i}=-\rho$ and $r_{i-1}, r_{,-1} \leqslant \sigma$, then

$$
q_{1}-\gamma<c_{1}=\frac{(\sigma-\gamma)^{3}}{3(\sigma-\rho)^{2}}
$$

(b) If $r_{i}=\sigma$ and $r_{i-1}, r_{i+1} \because-\rho$, then

$$
q_{i} \geqslant c_{2}=\frac{2 \sigma^{3}+3 \rho \sigma^{2}-3 \beta^{2} \rho-\beta^{3}-3 \beta \rho^{2}}{3(\sigma-\rho)^{2}} .
$$

Proof. From (2.1) we have $q_{1}=1:\left(x_{i+1}-x_{i-1}\right)\left(q_{,^{-}}+q_{,^{-}}\right)$with

$$
q_{i}^{-}=2 \int_{x_{i}}^{r_{i}} p_{2}(x) \omega_{i}(x) d x \quad \text { and } \quad q_{i}=2 \int_{x_{i}}^{r_{1-1}} p_{1}(x) \omega_{i}(x) d x
$$

(a) First we consider q_{1}. If we define $x=x_{i}-\left(x_{i-1}-x_{i}\right) \tau_{,} \tau_{11}=$ $\left(\rho-\gamma^{\prime}\right)(\rho-\sigma)$. and

$$
\bar{p}(\tau)=\begin{array}{ll}
(\gamma . & \text { if } 0 \leqslant \tau \leqslant \tau_{0} \\
1-\rho-(\sigma-\rho) \tau . & \text { if } \tau_{0}<\tau \leqslant 1
\end{array}
$$

the assumptions on r imply $p_{3}(x) \leqslant \bar{p}(\tau)$ for $\tau \in[0,1]$. Since $\omega_{i} \geqslant 0$, we obtain the inequality

$$
\begin{aligned}
\frac{1}{x_{i-1}-x_{i}} q_{i} & \leqslant \frac{2}{x_{i-1}-x_{i}} \int_{x_{i}}^{r_{i-1}} \bar{p}(\tau)(1-\tau) d x \\
& =2 \int_{0}^{1} \bar{p}(\tau)(1-\tau) d \tau \\
& =2\left(\int_{0}^{\tau} \gamma(1-\tau) d \tau-\int_{\tau_{0}}^{1}(-\rho \div(\sigma-\rho) \tau)(1-\tau) d \tau \mid\right. \\
& =\frac{\sigma-2 \rho}{3}-\frac{(\rho-\gamma)^{2}}{\rho-\sigma}-\frac{1}{3} \frac{(\rho-\gamma)^{3}}{(\rho-\sigma)^{2}}=c_{1}-\gamma .
\end{aligned}
$$

In a similar way we get

$$
\frac{1}{x_{1}-x_{i-1}} \boldsymbol{q}_{i}^{-}<c_{1} \cdots \gamma
$$

This yields

$$
\text { 4. } \left.\frac{1}{x, 1-x,}(x, 1-x) \cdot(x,-x, 1)\right)\left(c_{1}-\gamma\right) \quad c_{1} \quad \gamma
$$

(b) First we consider 4 , If we define $x: x,-\left(x_{i-1}-x_{i}\right) \tau, \tau_{11}=$ $(\sigma \cdots \beta)(\sigma \cdots \rho)$.

$$
\bar{p}(\tau)=\begin{array}{llllll}
\sigma-(\sigma-\rho) \tau . & \text { if } & 0 & \tau & \therefore \tau_{n} \\
-\beta, & \text { if } & \tau_{10} & \ddots & \ddots & 1 .
\end{array}
$$

the assumptions on r imply $p_{2}(x) \geqslant \bar{p}(\tau)$ for $\tau \in[0,1]$. Since $\omega, \geq 0$, we obtain the inequality

$$
\begin{aligned}
\frac{1}{x_{1}-x_{i}} q, & \quad \frac{2}{x_{1}-x_{i}} \int_{i}^{1,-1} \bar{p}(\tau)(1-\tau) d x \\
= & 2\left(\int_{0}^{-1 \prime}(\sigma-(\sigma \cdot \rho) \tau)(1-\tau) d \tau-\int_{-1}^{1}-\beta(1-\tau) d \tau\right) \\
& =\frac{(\sigma-\beta)^{2}}{\sigma \cdot \rho}-\frac{1}{3} \frac{(\sigma-\beta)^{3}}{(\sigma \cdot \rho)^{2}}-\beta=c_{2} .
\end{aligned}
$$

In a similar way we get

$$
\frac{1}{x_{i},-x_{1}} q_{1}^{-} \quad \because c_{2} .
$$

This yields $q_{2}=c_{2}$.
(2.3) Lemma. If $-\beta=\gamma=\beta$ and ϵ - 0 . there are numbers ρ. $=\beta$ such that for c_{1}, c_{2} in (2.2) the inequalities

$$
c_{1} \cdot \epsilon \quad \text { and } \quad c_{2} \quad 1
$$

are calid.
Proof. If $\rho=t^{5}$ and $\sigma=t^{3}$, we obtain from (2.2)

$$
c_{1}=\frac{\left(t^{3}-\gamma\right)^{3}}{3\left(t^{3}--\frac{t^{3}}{}\right)^{2}} \rightarrow 0
$$

and

$$
c_{2} \frac{2 t^{3}-3 t^{11}-3 \beta^{2} t^{5}-\beta^{3}-3 \beta t^{\prime \prime \prime}}{3\left(t^{\overline{5}}-t^{3}\right)^{2}} \rightarrow x
$$

for $t \rightarrow x$.
(2.4) Definition. For $\rho, \sigma>0$ let

$$
K(\rho, \sigma)=\left\{\left(r_{1}, \ldots, r_{n}\right)^{T} \in \mathbb{R}^{n} \quad-\rho<r_{1}<\sigma \text { for } i=1 \ldots, n\right\}
$$

and $\lambda K(\rho, \sigma)$ be the boundary of the cube $K(\rho, \sigma)$.
(2.5) Corollary. If $q \in Q_{\gamma}$ and $-\beta<\gamma<\beta$, there are numbers $\rho, \sigma \geqslant \beta$ such that

$$
q \notin T_{\alpha}(\partial K(\rho, \sigma))
$$

for all $x \in[-\beta, \gamma]$.
Proof. Since $q_{i}>\gamma$, there is an $\epsilon>0$ such that $q_{i}-\gamma>\epsilon$ and $q_{i}<\left(1_{i} \epsilon\right)$ for $i==1, \ldots, n$. If $\rho, \sigma \geqslant \beta$ are chosen according to (2.3) and $r \in \partial K(\rho, \sigma)$, we have $r_{i}=-\rho$ or $r_{i}=\sigma$ for some $i=1, \ldots, n$. If $q=T_{x}(r)$, then (2.2a) implies $\epsilon<q_{i}-\gamma \leqslant c_{1} \leqslant \epsilon$ in the first case and (2.2b) implies ($1 / \epsilon$) $>q_{i}>$ $c_{2} \geqslant(1 / \epsilon)$ in the second. Thus we get a contradiction in both cases.

3. The Degree

In this paragraph we show that for $q \in Q_{\gamma}$ the degree $\operatorname{deg}\left(T_{\gamma}, K(\rho, \sigma), q\right)$ of the mapping T_{y} is nonzero, if the cube $K(\rho, \sigma)$ is chosen appropriately. From this, theorem 2 is easily deduced.
(3.1) Lemma. If $\gamma \in \mathbb{R}$ and $q \in Q_{\gamma}$, there is a number $\beta>\gamma^{\prime} \gamma \mid$ such that

$$
\operatorname{deg}\left(T_{-\beta}, K(\rho, \sigma), q\right) \neq 0
$$

for all $\rho, \sigma \geqslant \beta$.
Proof. Let $z=\left(z_{1}, \ldots, z_{n}\right)^{T}=\Delta^{-1}(q)$ and u^{*} be the natural cubic spline on $[a, b]$ with knots in X, which interpolates the data $\left(x_{i}, z_{i}\right), i=0, \ldots, n \div 1$. Let $r^{*}=\left(r_{1}^{*}, \ldots, r_{n}^{\star}\right), r_{i}^{*}=D^{2} u^{*}\left(x_{i}\right)$ for $i=1 \ldots, n$, and $\beta>\max _{1 \leqslant i \leqslant n} \mid r_{i}^{*} ;$. Then for $\alpha=-\beta$ we have $S_{x}\left(r^{*}\right)=u^{*}$ and $T_{\mathrm{a}}\left(r^{*}\right)=q$. Since (2.1b) applies for $r \in K(\beta, \sigma)$, the mapping T_{α} is linear on $K(\beta, \sigma)$. The matrix corresponding to T_{α} is diagonally dominant, therefore T_{2} is regular and r^{*} is the unique solution r of the equation $T_{x}(r)=q$ in the cube $K(\beta, \sigma)$. From an elementary property of the degree we obtain

$$
\operatorname{deg}\left(T_{2}, K(\beta, \sigma), q\right) \in\{+1,-1\}
$$

cf. Ortega and Rheinboldt [6, 6.1.2]. It follows that $\left.q \notin T_{x} \overline{(K(\rho, \sigma)}-K(\beta, \sigma)\right)$. For otherwise, we have two solutions of problem $A_{x}{ }^{2}$ according to (1.8),
namely $\|^{\circ} \quad S_{1}\left(r^{\prime}\right)$ with $r^{-}=K(\beta, \sigma)$, i.e. $-\beta \quad r_{i}^{\prime} \quad$ ofor $i \quad 1 \ldots . . n$ and on the other hand $u=S_{x}(r)$ for some $r=\overline{K(\rho, \sigma)}-K(\beta, \sigma)$. i.e..r. $--\beta \quad 1$ or $r, \quad \sigma \quad \beta$ for some $i=1, \ldots n$. Consequently we have for $p^{*}=\Pi\left(r^{*}\right)$ and $p \quad \Pi(r)$

$$
D^{2} u^{*} \quad-p^{2} \because p_{2} \quad D^{2} u
$$

so u and u are distinct. which contradicts theorem I. From the excision theorem, cf. Ortega and Rheinboldt [6, 6.2.8], it then follows

$$
\operatorname{deg}\left(T_{,}, K(\rho, \sigma), q\right)=-\operatorname{deg}\left(T_{\imath}, K(\beta, \sigma), q\right)=0 .
$$

(3.2) Corollary. If $\hat{i} \in \mathbb{R}$ and $q \in Q_{v}$, there are numbers $\rho, \sigma \cdots \gamma$. such that

$$
\operatorname{deg}(T, K(\rho, \sigma), q)=0
$$

equation $T_{\gamma}(r)=$ q has a solution $r \equiv K(\rho, \sigma)$.
Proof. Let β, γ be chosen according to (3.1) and $\rho, \sigma \ldots \beta$ as in (2.5). Since the mapping $T:[-\rho, \gamma], K(\rho, \sigma) \rightarrow \mathbb{R}^{\prime \prime}$ is continuous. we can apply the theorem on the homotopy invariance of the degree, cf. Ortega: R heinboldt [$6,6.2 .2]$. From (2.5) and (3.1) we deduce that the degree is nonzero. The solvability of the operator equation follows from Kronecker's theorem, ef. Ortega Rheinboldt [6. 6.3.1].

Proof of theorem 2. From theorem I and (1.6) we have the existence and uniqueness of a solution and the sufficiency of condition $C . \stackrel{ }{ }{ }^{2}$. For the demenstration of the necessity of $C .{ }^{2}$. let $q=\Delta(z) \in Q .$. and u be the solution of $A_{i}{ }^{2}$. From (3.2) there is a solution of the equation $T_{i,}(r)=q$. Therefore, (1.8) implies that $\tilde{\pi}=-S_{v}(r)$ solves problem $A_{y} .2$. Since this solution is unique, we have $\tilde{u}=u$. For $p=\Pi(r) \in P^{2}$ we have $\Gamma_{\because}(p)=u$. i.e. $D^{2} u=p_{y}$. This means that $C .^{2}$ is satisfied. Evidently p. is a polygonal function on $[a, b$] having at most $m(n)$ knots. Therefore, u is a cubic spline. From (2.1) it is easily seen that the solution of the equation $T_{\nu}(r)=q$ is in the open set R.. of those $r \in \mathbb{R}^{r}$ which satisfy $r_{1-1} \because \gamma$ or $r_{t-1} \therefore \gamma$ if $r_{1} \leq \gamma, i=1, \ldots, n$. Since the spline u is unique, the function $p_{i}=D^{2} u$ and the vector $r_{,} r_{i}=p\left(r_{i}\right)$ are uniquely determined. Therefore, $T: R \rightarrow Q_{:}$is a continuous one-to-one mapping. The domain invariance theorem. cf. Deimling [1. Theorem 11. 3]. implies the continuity of $T_{\%}^{-1}$. Hence, $u=S .,: T_{\because}^{-1} \quad \Delta(z)$ depends continuously on z.

References

1. K. Deimling, "Nichtlineare Gleichungen und Abbildungsgrade," Springer-Veılag, Berlin Heidelberg/ New York, 1974.
2. I. Ekeland and R. Temam, "Convex Analysis and Variational Problems." NorthHolland, Amsterdam'Oxford. New York, 1976.
3. U. Horvuvg, Monotone Spline-Interpolation, in "Numerische Methoden der Approximationstheorie 4" (L. Collatz, G. Meinardus, and H. Werner. Eds.), ISNM 42, pp. 172191. Birkhäuser, Basel: Stuttgart, 1978.
4. D. F. McAllister, E. Passow, and J. A. Roulier. Algorithms for computing shape preserving spline interpolations to data, Math. Comp. 31 (1977), 717-725.
5. D. F. McAllister a vd J. A. Rollier, Interpolation by convex quadratic splines, Math. Comp. 32 (1978), 1154-1162.
6. J. M. Ortega and W. C. Rheinboldt, "Iterative Solution of Nonlinear Equations in Several Variables." Academic Press, New York London, 1970.
7. E. Passow and J. A. Roulier, Monotone and convex spline interpolation, SIAM J. Numer. Anal. 14 (1977), 904-909.
8. D. D. Pence, "Best Mean Approximation by Splines Satisfying Generalized Convexity Constraints," MRC Technical Summary Report 1794, Madison, Wisc., 1977.
9. H. Werner and R. Schaback. "Praktische Mathematik II," Springer-Verlag, Berlin/ Heidelberg New York, 1972.
