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INTRODUCTION

Interpolation by convex splines has recently attracted some attention,
cf. McAllister et al. [4], McAllister and Roulier [5], Passow and Roulier [7]
and Pence [8]. In this paper it is shown that the smoothest convex inter-
polating function to convex data is a cubic spline. The proof of this result is
based on the degree theory of mappings in finite dimensional Euclidian
space, cf. Ortega and Rheinboldt [6, Chap. 6]. The similar problem of
finding the smoothest monotone interpolating function to monotone data
was solved in Hornung [3].

1. THE PROBLEM AND MAIN RESULTS

Let a set X = {x; ...., X,,} of fixed data points in the interval [a, b] with
a =x, <Xy < <X, <xp_; =b,nzx=1 and some boundary data
Zo» Zn-1 € R be given. The space of functions on [a, b] having square inte-
grable derivatives of the k-th order is denoted by H*(a.b). It is a Hilbert
space with norm

2
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N R io2
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(1.1) DerFiNiTION. For an integer number & with 2 <k <{n — 2, a real
number ¥, and a vector z = (z; ...., =,)T € R" of interpolation data, a function
u is called admissible, if u e H*(a, b) satisfies u(x;) =z, for i = 0,....n + 1
and D"y > y a.e. on [a. b]. The set of all admissible functions is denoted by
M)
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(1.2) PROBLEM. A minimizer of the functional Fu) =- 4 _[: (D () dx
on the set M. of admissible functions is called a solution of problem 4.7

(1.3) DerinITION.  (2) We denote by P* the space of all splines p on
fa, b] of degree & — 1 with knots in X. which satisfy Dip(x,) =0 for / = 0.
i=n—1landj=0,.. A -2

(b) For pe P" and » € ¥ we set

N § (), if p(x) >«
pa) l otherwise.

(c) We say that a function u satisfies condition C,, if there is a p € P* with
D*uy = p, on [a. b].

THEOREM 1. If for a given data vector z € R” there is an admissible func-
tion, problem A,* has a unique solution. For an admissible function to solve
problem A condition C.F is sufficient.

(1.4) DermNiTioN.  (a) For z € R” we denote by 4(z) =g = (g ..., g,)T €
R" the vector of second difference quotients

g — 2 ( Zin — % Di— i )

Xig — X VX — X Xp— Xy
(b) A data vector = € R is called y-convex, if 4(z) is an element of the set
0. ={q,q ) €R" g, >vfori=1...n.

THEOREM 2. Let z € R* be a y-convex data vector. Then problem A.* has
a unique solution. For an admissible function to solve problem A.? condition C.?
is necessary and sufficient. The solution is a cubic spline having at most

n—1

373

if nodd.
m(n) = "
35. it n even,
\ -

knots in (a, b): it depends continuously on the data z.

Since the interpolating natural spline of degree 2k — 1 with knots in X
satisfies condition C3* if —8 is sufficiently large, theorems 1 and 2 are gene-
ralizations of the well known minimal properties of natural splines. First we
prove theorem 1.

(1.5) LEMMA. The functional F is Fréchet-differentiable on H%(a.b),
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strictly convex on M.¥ and coercive over MY, i.e. lim F(u) = + oc holds for
Nul||— o andue M.

Proof. If
b
). > = | Du(x) D*g(x) dix,
we have

Flu ) — F@) ~ CF@, 9y = 5 [ (D) dx = o g1)

for u, ¢ € H*(a, b), i.e. F' is the Fréchet-differential of F. For any u, v € M,7,

e

u # v we have

b
CF'(u) — F'(t),u— 1> = ( (D¥(u — v)(x))? dx;

since u(x;) = v(x;) = z; for i =0,...,n — 1, and k < n — 2, this integral is
positive. Hence F is strictly convex on M.F, cf. Ekeland/Temam [2, Chap. I,
Prop. 5.4 and 5.5). Let & be a polynomial of degree & — 1, which interpolates
exactly &k data (x;, z;), ie IC{0,..., n +— 1}. Then for |u{— oo we have
|'u4 — @i ! — o0. On the subspace U of H*(a, b) consisting of those functions
d, for which #(x;) = 0 for i & I, the norm

([ oraay ax) ™

g

is equivalent to the norm induced from H*(a, b). Therefore || u | — ¢ implies

Fa) = 5 [ (Dot dx — 3 [ (D = 0 dv > 20,

~a

i.e. Fis coercive over M,*.

Proof of theorem 1. Since M_F is nonvoid, closed and convex, existence
and uniqueness of a minimizer follow from (1.5), cf. Ekeland/Temam [2,
Chap. I1, Prop. 1.2]. Let u € M,* satisfy condition C,*, and p € P* be chosen
according to (1.3c). Then from the proof of (1.5) we have

F, > = [ ! p(x) DFo(x) dx

for any ¢ € H¥(a, b). If p is extended by zero outside [a, b], and A; = D*-1
plx; + 0) — D¥p(x; — O)fori = 0,..., n - 1, integration by parts yields

n+l

[ o) Do) dx = (—17 T A

tu
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hence
n o1 b
CF). ¢ = (=D Y Aig(x) - | (plx) — plx)) Dig(x) dx
-0 v
holds for ¢ € H*(a. b). For v = M.* we have v(x;) = w(x;}fori -0...n - I,
therefore

b
'

F'(u), 0 —u, = ‘ (pAx) — p(X)ND e(x) — pLx)) dv.

It is easy to see that this integral is nonnegative. Since p, — p -+ 0. we have to
consider only an x & [a, b]. for which p.,(x) — p(x) =- 0. i.e. p(x) < v and
p.(x) = v. From D*v(x) 2 y for almost all x € [a. b] we deduce

F),r—u -0

for any v € M.} Therefore. u is a minimizer of F on M *, cf. Ekeland and
Temam [2, Chap. II, Prop. 2.1].

The remainder of the paper is devoted to the proof of theorem 2. The first
step is the demonstration that y-convexity of a data vector = implies the
existence of an admissible function.

(1.6) LEmvA. If - e R" is y-convex, then there is a function v € C*[a, b]
with v(x,) == z; for i =0....n — 1 and D* ~- y on [a. b]: the set M.? is non-
void.

Proof. letq =(q,,...q,)7 = 4(z)and y be chosen such thatg, = % v
fori = 1..... n. Then we define

Sipp = L= i=0,..n
X,y — X;
and
Si19 — S, y/
K, = =2 _‘"’—% i= le.n
X N
Since g € Q5 . we have «, > 0. For
Ka S Kpy 7 I-
) (7T
o = 532 — (Xy — X¢) (7 .- I..
1 .
G, — - (X, — S, s — (Y, — X ) Sia)e 1 L, .

X, — X1
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and
S
we obtain
H_?:Ki_’(i—l>0

for all i = 0,.... n. For any 7 € (0, 1) a nondecreasing function ¢, € C=[0, 1]
can be chosen such that ¢,(0) = 0. (1) = 1, D (0) = Di (1) =0 for
all j = 1,2,..., and [o 4,(r) dt — 5. We define

— K
Ko K; — Kjq
wWidX) = (07 — 05 — P(xioy — X3)) iy, (T\ — \1\ ) + plx — x;),
Njp — %y
and
tdx) = z; + o(x — x;)) + ( wi(§) d&
for i == Q,.... n. Now we have r'; € C*[x;, x;] and v{x;) = z;, . Dv(x;) = o,.
D%(x;) = 9. Div(x} =0 for j=3.4.../=ii+1 and D%, =9 on

[x;. x,_] Therefore the function
v(x) = vx) for xe[x;. x;4]

has the desired properties.

In the proof of theorem 2 the necessity of condition C,? remains to be
shown. As a preparation we reformulate this condition as an operator
equation.

(1.7) DeriNiTION. (a) Let ry =r,, = 0. For a vector r = (¢, ,..., )T €
" we denote by II(r) = p € P? the polygonal function on [a, b} with knots
in X, for which p(x;) = r; holds.

(b) Let G be Green’s function for the differential operator D? on [a, b] with
boundary conditions u(a) = u(b) = 0. i.e.

L ((x — b)t — a). if a <t Zx-<b
h—a l(x — a)t — b). it a<x-<<r <h

G(x, 1) =

Then for pe P? and xR we denote by I'(p) = u the function on [a, b]
defined by

1

u(x) = Ay

b
w—ﬂ%+m~m%ﬂﬁjcmnmmm

6.40.28/3-1
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{c) For a function u on [a. b} let /M) = be the vector (... 2V = 2
with =, - w(x)for7 - 1. .

(d} For ncR wedefineS, - I', [Hand 7 =4 4 S,..

(1.8) COROLLARY. [f =< Rrisy-comrex. g -- No).re R, and T(r) g,
then u = S.(r) is the solution of problem A.%.

Proof. Since 4 : k" — [R" is a regular affine mapping. we have - .1
SAr) - Au). ie. u(x,) ==z, for i = O...n— 1. For p == Il{r) we obtain
from (1.7b. d) u = I'.(p) and D*u = p,. >~ y on [a. b]. Evidently « is admis-
sible and condition C.? is sutisfied. According to theorem 1 the function u
solves problem 4.2

2. THE HomoTOPY

In this paragraph we study the operator family 7, . We begin with a well
known representation of the second difference quotient.

(2.1) LEmma. (a) If

/
v— v, .

S—»r) ! for  x; X o= X
Y AV

wi(x) = o !

X, — X

B for x; \ Yiq
X, — X,

reR", g = Tr), and p = II(r), we hare

b Lyl
- l PN wix) dy.

AV T VIS

(o) If r; = xforj=1i—1.i.i— L. then

Proof. Since
g, = 24%x,_ . x; .o x, ) Tip),

formula (a) follows from

A2Ax, . x Lx, Hy —1) —
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according to Peano’s theorem on the representation of linear functionals, cf.
Werner/Schaback [9, example 4.5]. Formula (b) is a direct consequence of (a).

(2.2) Lemma. LetreR*. T(ry=q.and —p < —B < a <Ly {0o, —p <o.

@) If r, = —pandr; ;.r. = o.then

((r _ 7)3

g~y = = o+ pP -

®) Ifri=candr;,_y,r;q 2o —p, then

e 203 + 3pat — 3% — BF — 3Bp?
q; == G 3o~ p) .

Proof. From (2.1) we have ¢, == 1.(x,., — x,_,) (¢, *+ ¢,7) with

g~ =2 ' DY) wdx) dx and g, =2 ’ Hp‘(.\‘) wix) dx.

QR P o,

(a) First we consider ¢, . If we define x =x;, - (x;.; —x) 7.7y =
(p — :)p - o). and

fy- if 0<r<o
l—p — (o =~ p)r. if 79 <101,

[

p(r) =

~.

the assumptions on r imply p.(x) < p(7) for + € [0, 1]. Since w; > 0, we
obtain the inequality

N — Xy Y

2[R0 mdy
-,
Al
=2 BNl — 7)dr
0
cpT a1 .
=2 (‘. Y(l — 1) dr — "' (—p +~ (o0 — pyr)l — 7)d7)
o—=2 =y 1Tp—y?

= ¢ — v

I

3 p—o j(pva)2

In a similar way we get

- <
- ——q; < G
X, Xy
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This yields

!
g, ooy )y, -

Ny N,

X, ley - ) (

(b) First we consider ¢, . If we define x - x, ~ (v, — x)7.7) ~

(o~ BYi(o -~ p).

o — (g - p)r.

Ay = ¥
p(‘) - ?*,8,

it 0.7 <7
if =, .7 1

the assumptions on r imply p.(x) = p(+) for 7<[0,1). Since w, == 0. we

obtain the inequality

2 et
B T TN ' p(r)(l

-2 H‘T"(zr —(a - p)X

i)

(o0 - B)P® I (¢ — B
o - pi 3 (o - p)2

In a similar way we get

This yields ¢, .- ¢, .

(2.3) Lemma. If —B < v - B and «
such that for ¢, . ¢, in (2.2) the inequalities

— 7)dx
-1
I —7)dr = | — Bl —7)dr)

—B= e,

“- 0. there are numbers p. v "z 3

¢y - € and Ca L
are valid.
Proof. 1f p = ¢*and o = 1 we obtain from (2.2)
B —yP
& 3w O
and
a3 g g
“ 3([’—‘ . 1‘3)2 -
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(2.4) DermnviTioN.  For p, o > 0 let
K, 0) ={(ry.... r,)T eR* —p <r, <cfori=1..,n
and éK(p, o) be the boundary of the cube K(p, o).

(2.5) CororLrLarY. [Ifge Q.and —B <y < B. there are numbers p, o = 8
such that

q ¢ T(eK(p. o))

for all xe [—f, y].

Proof. Since g; > vy, thereisan e >> Osuchthatg, — ¥ > eand g; << (l/¢)
for i == 1,..., n. If p, 0 = 8 are chosen according to (2.3) and r € 2K(p, c), we
have r; == —p or r; = o for some i = 1,...n. If ¢ = T,(r). then (2.2a)
implies € << g, — ¥ << ¢; < € in the first case and (2.2b) implies (1/€) > ¢; >
¢s = (1/€) in the second. Thus we get a contradiction in both cases.

3. THE DEGREE

In this paragraph we show that for g € Q, the degree deg(T,, . K(p, 0), ) of
the mapping T, is nonzero, if the cube K(p, o) is chosen appropriately. From
this, theorem 2 is easily deduced.

(3.1 LemMmA. IfveRand g€ Q, , there is a number 8 > "y | such that

deg(T_ , K(p, 0), q) # 0

Sorall p,oc = B.

Proof. Let z = (z;..... z,)T = A4Yq) and u* be the natural cubic spline
on [a, b] with knots in X, which interpolates the data (x,, z,).i =0.....,n — L.
Let r* = (rf,..., 13), rf = D2r¥(x;) for i = l....,n, and B > max,g;cn | rf .
Then for o« = — 3 we have S,(r*) = u* and T,(r*) = ¢. Since (2.1b) applies
for r € K(B, o), the mapping T, is linear on K(8, ¢). The matrix corresponding
to T, is diagonally dominant, therefore T, is regular and r* is the unique
solution r of the equation T,(r) = ¢ in the cube K(f3, ). From an elementary

property of the degree we obtain
deg(T; * [<(I3’ U)" ¢7) € {+]7 _1}3

cf. Ortega and Rheinboldt [6, 6.1.2]. it follows that ¢ & T(K(p, c) — K(3, o)).
For otherwise, we have two solutions of problem A4,? according to (1.8),
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namely #° S(r'ywithv =~ K(p. o), ie.. —3 - 1] gfori L. n. and
on the other hand u = S,(r)forsome r = K(p, 5) — K(B. o). l.e..r, -3 v
orr, o 3 forsomei= 1. n. Consequently we have for p= - [1(r~)
and p TI(r)

so u~ and u are distinct. which contradicts theorem [. From the excision
theorem. cf. Ortega and Rheinboldt [6, 6.2.8], it then follows

deg(T, . K(p. o). ¢) - deg(T, , K(3. o). g) = 0.

(3.2) CoroLLARY. If y =R and qe O, . there ure numbers p, o -y
such thar

deg(7. . K(p. o), q) = O
equation T (r) = ¢ has a solution r = K(p. o).

Proof. Let3 - v bechosen according to (3.1) and p. ¢ = 3 asin (2.5).
Since the mapping T: [—3.+] - K(p. o) — R" is continuous. we can apply
the theorem on the homotopy invariance of the degree, cf. Ortega:Rheinboldt
[6, 6.2.2]. From (2.5} and (3.1) we deduce that the degree is nonzero. The
solvability of the operator equation follows from Kronecker's theorem. cf.
Ortega Rheinboldt [6. 6.3.1].

Proof of theorem 2. From theorem | and (1.6) we have the existence and
uniqueness of a solution and the sufficiency of condition .2 For the demon-
stration of the necessity of C.2 let ¢ = A(z)e Q. and u be the solution of
A4.% From (3.2) there is a solution of the equation 7.(r) - - ¢. Therefore, (1.8)
implies that # == S,(r) solves problem A.% Since this solution is unique, we
have # = u. For p = [1(r) € P*we have I'.(p) == u.i.e. D*u = p, . This means
that C.? is satisfied. Evidently p. is a polygonal function on [a, b] having at
most m(n) knots. Therefore. i is a cubic spline. From (2.1) it is easily seen
that the solution of the equation T,(r) = ¢ is in the open set R.. of those
re ik which satisfy r,_, -y or r,_y -y if r, =iy, =1, 0 Since the
spline u is unique, the function p, = D% and the vector r. r, = p(r;) are
uniquely determined. Therefore. 7. : R. -> Q.. is a continuous one-to-one
mapping. The domain invariance theorem. cf. Deimling [I. Theorem I1. 3].
implies the continuity of 7'. Hence.w = S, - T.'  A(z) depends continuous-
ly on -
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