
JOURNAL OF APPROXIMATION THEORY 28, 227-237 (1980)

Interpolation by Smooth Functions

under Restrictions on the Derivatives

U. HORNU:"G

Institut fur Numerische und Instrumentelle }vfathematik
Unit'ersitiit .Munster, 4400 l'vfunster, West Germany

Communicated by T. J. RiL"!in

Received September 2, 1978

INTRODUCTIO:-i

Interpolation by convex splines has recently attracted some attention,
cf. McAllister et at. [4], McAllister and Roulier [5], Passow and Roulier [7]
and Pence [8]. In this paper it is shown that the smoothest convex inter
polating function to convex data is a cubic spline. The proof of this result is
based on the degree theory of mappings in finite dimensional Euclidian
space, cf. Ortega and Rheinboldt [6, Chap. 6]. The similar problem of
finding the smoothest monotone interpolating function to monotone data
was solved in Hornung [3].

1. THE PROBLEM Al"D MAl" RESULTS

Let a set X = {Xl •... , x,,} of fixed data points in the interval [a, b] with
a = Xo < Xl < ... < x" < X n- l = b, n ? I, and some boundary data
Zo, ':"-1 E IR be given. The space of functions on [a, b] having square inte
grable derivatives of the k-th order is denoted by HI·(a. b). It is a Hilbert
space with norm

. k 1 ~

(

,. ; 0 )

U; = L. D u "~'(a.b) .
,)~O

(1.1) DEFI:-iITlON. For an integer number k with 2 ~;; k ~ n - 2, a real
number y, and a vector Z = (Zl .... , =nV E IR" of interpolation data, a function
II is called admissible, if U E Hi'(a, b) satisfies U(Xi) = .:, for i = 0..... II --l- I
and D"l/ > y a.e. on [a, b]. The set of all admissible functions is denoted by

""f./ .
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(1.2) PROBLEM. A minimizer of the functional F(u) ~.. } f: (Di'II(X))" dr
on the set M./ of admissible functions is called a solution of problem A.'.

(1.3) DEFll'lTIO:'\. (a) \Ve denote by pl. the space of all splines p on
[a, b] of degree k-- 1 with knots in X. which satisfy Djp(x i ) = 0 for i c= O.
i = " - 1 and j = 0..... k -- 2.

(b) For p EO pi, and :\ E R: we set

( .) _ !p(x).
p,.\ - 1,,<.

if p(x);- (t,

otherwise.

(c) We say that a function u satisfies condition C/', if there is a p EO Pi, with
DkU = p" on [a. b].

THEOREM I. If for a given data rector z EO IR" there is an admissible func
tion, problem A"k has a unique solution. For an admissible function to soh'e
problem A./ condition c./ is sufficient.

(1.4) DEFINITION. (a) For Z E IR" we denote by Ll(z) = q = (ql .... , q"V E

IRn the vector of second difference quotients

qi =. 2. ( ~i+l - z: _ -i - ~i-l ).

·\i··l - '\i-l . '\iTI - ·\i Xi - X;-1

(b) A data vector Z E Ill" is called y-convex. if Ll(z) is an element of the set
Q,. = {(ql ,... , q"Y E IR" ' q; ',. y for i = I. .... ,,;.

THEOREM 2. Let z E IR" be a y-convex data rector. Then problem A,,2 has
a unique solution. For an admissible function to solve problem A} condition C}
is necessary and sufficient. The solution is a cubic spline having at most

I
,,~l

3-
2
-,

min) =
3~'J •

\ -

ifn odd.

it" even,

knots in (a, b): it depellds continuously on the data z.

Since the interpolating natural spline of degree 2k - 1 with knots in X
satisfies condition C/ if -,8 is sufficiently large, theorems 1 and 2 are gene
ralizations of the well known minimal properties of natural splines. First \ve
prove theorem 1.

(1.5) LEMMA. The functional F is Frechet-dffferentiable on Hk(a. b).
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strictly convex on M" I: and coerch'e over M,,", i,e. lim F(u) = + ex holds for
Ii Ii !I ->- wand u E M"k.

Proof If

<F'(u), cp> = rDkU(X) Dkcp(X) dx,
'a

we have

F(u --;- cp) - F(u) - <F(u), cp) = ~r(Dk rp(X»2 dx = o( q; I:)
n

for u, cp E Hk(a, b), i,e. F' is the Frechet-differential of F. For any u, v EM,,",
u F v we have

<F(u) - F(r), u - r; = r(Dk(U - r)(x»2 dx;
• a

since u(x;) = vex;) = z; for i = 0,... , n -~ 1, and k :(; n --;- 2, this integral is
positive. Hence F is strictly convex on M}, cf. Ekeland/Temam [2, Chap. I,
Prop. 5.4 and 5.5]. Let it be a polynomial of degree k - 1, which interpolates
exactly k data (x;, z;), i E Ie {O, ... , Il --;- l}. Then for :1 u i[ ->- 00 we have
!' U - It !! ->- 00. On the subspace U of Hk(a, b) consisting of those functions
ii, for which iiex;) = °for i E I, the norm

cc (DkU(X»2 dX) 1;2

is equivalent to the norm induced from Hk(a, b). Therefore :1 u i ->-XJ implies

1 fb 1 (b
F(u) = 2"'0 (DkU(x»2 dx = 2" J

a
(D"(u - it)(X»2 dx ->- 'x;,

i.e. F is coercive over AI/.

Proof of theorem 1. Since M/ is nonvoid, closed and convex, existence
and uniqueness of a minimizer follow from (1.5), cf. Ekeland/Temam [2,
Chap. II, Prop. 1.2]. Let u E M,," satisfy condition C/" and p E pk be chosen
according to (1.3c). Then from the proof of (1.5) we have

<F(u), r'> = rp,,(x) Dkq;(X) dx
• a

for any cp E Hk(a, b). If P is extended by zero outside [a, b], and '\; = D"-l
p(x; + 0) - Dk-1p(X; - 0) for i = 0, ... , n --L I, integration by parts yields

b n+]f p(x) Dkcp(x) dx = (-IY L .\;q;(x;),
• ~l i=O



230

hence

. F'(II). (f
r, 1 .11

( --I I"~ L Aier(.\",) - I (P..(X)- pIx)) Dl,({(x) dx
1 -0

holds for 'f EO HI'(a. b). For l' E JI.'" we have 1'(Xi) ~~ lI(x,) for i 0..... 11 I.
therefore

<F'(u), l' - u, = r(p.,(x) - p(X))(DI"("(X) - p.,.(x)) dx .
. "

It is easy to see that this integral is nonnegative. Since p., - p .: O. we have to
consider only an x EO [a, b]. for which pix) - p(x) '. O. i.e. p(x) < y and
p,.{x) == y. From DI,C(X) > y for almost all x EO [a. b] we deduce

F(u), I" - II . 0

for any v EO M/. Therefore. II is a minimizer of F on .1'14.,.,.. cf. Ekeland and
Temam [2, Chap. n, Prop. 2.1].

The remainder of the paper is devoted to the proof of theorem 2. The first
step is the demonstration that y-convexity of a data vector::: implies the
existence of an admissible function.

(1.6) LE\I\1A. If::: EO [RII is y-colll"ex. then there is a fUl1ction r EO C', [a, b]
Irith 1'(x;) =~ :::,for i = 0..... 11 - 1 and D21' -. y 0/1 [a. b]: the set M 2 is 110t/

mid.

Proof Let q = (q1 ,.... q,Y = .d(:::) and y be chosen such that q, ". y -. y
for i = 1..... 11. Then we define

and

K,

- i-I .... i
.1;-12 = ---=---

X'-1 - x;

5;_1 2 - S,_l 2 Y
Xi-1 - X'_1 - "2'

= 0, .... 11,

I, .... 11,

Since q EO Qy . we have K, > O. For

K fI - 1

v, --
I

------ ((X,_I - x, l.s, I 2 - (x, - Xi -1) SiLl J.
X; __ 1 - X'-1

I. .... 11.
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a;~l - a; - °. - y = Ki - K;_l >
X;_l - ,Xi
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for aU i = 0, .... n. For any 'YJ E (0. l) a nondecreasing function if-in E CX:[O, 1]
can be chosen such that if-in(O) = 0. if-in(l) = 1, DitPr.{O) = Di1{;n(l) = °for
aU; = 1. 2, ... , and f~ 1{;n(t) dt = 'YJ. We define

. \.'- \.'. '

\1';(x) = (a;.1 - ai - ji(Xi-l - Xi») l/Jn ; (,' , '. ) --!- y(x - Xi)'
,X;_1 - ,Xi

and

r,.(x) = Zi + a,{x - Xi) + r"' II'M) d~
'J

for i~· 0..... n. Now we have 1'; E CX[Xi, XH] and l.',.(x[) = ~l • Dp;(Xl) = a/.

D2V;(XI ) = y. Dip,.(Xt) = ° for .i = 3.4..... / = i. i + 1 and D2V;): Y on
[x; . X,-I]' Therefore the function

veX) = r,.(x) for X E [Xi' xi-d

has the desired properties.
1n the proof of theorem 2 the necessity of condition Cy

2 remains to be
shown. As a preparation we reformulate this condition as an operator
equation.

(1. 7) DEFINITIO~. (a) Let 1'" = 1',,-1 = 0. For a vector I' = (/'t , ... , r"V E

iR" we denote by lI(r) = p E p2 the polygonal function on [a, b] with knots
in X. for which P(Xi) = 1', holds.

(b) Let G be Green's function for the differential operator D2 on [a, b] with
boundary conditions u(a) = 1I(b) = 0. i.e.

G( ) __1_ I(x - h)(t - a).x t - ,
- , h - a (x - a)(t - b).

if a'.:; f <: x .; b
if a -::::: .\' <: r ::: h.

Then for p E p2 and oX E iR we denote by rJ p) = u the function on [a, b]
defined by

1 .b

u(x) = -b-- «b - x) Zo + (x - a) z,,_tl - I G(.\'. fI p,(r) dt.
- a ~(I
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(c) For a function 1I on [a~ h] let /!(u) ~ he the \ector (':1 .... ::::.)1 - l--:"
\\ ith :::, iI(X,) for i I..... II.

(d) For , -cC iR we define 5;, T, fl and T .J ./1 S,.

(1.8) COROLLARY. It':::,e ~,. is i-conu!X, ({ .. .d(:::), I' E iR', and T(r) if,

thell 1I = S,,(r) is the solution 0.( problem A.~.

Proof Since J : iF." -~ R" is a regular affine mapping. we ha\e::: .1
s.,.(r) .. .11(11). i.e. II(X,) =:::, for i· 0..... n - I. For p c. fl(r) we obtain
from (1.7b. d) iI c_ r(p) and D211 = fl" > Y on [a. bJ. Evidently II is admis
sible and condition C ~ is satisfied. According to theorem I the function II

solve" problem A.~.

2. THE HOMOTOPY

In this paragraph we study the operator family T, . We begin \vith a well
known representation of the second difference quotient.

(2.1) LEMMA. (a) If'

for Xi .\' "" Xi'1'

I' E [R", q e:c: T,(r), and fl = fl(r), l1'e hace

if,

J ~ .£'/ -I

-:-----.-.- I fl,(x) wi(X) d.\'.
.\, 1 - .\ I 1" J'! I

(b) Ifl'j -: J.fori = i - L i. i - L then

_ x, - Xi 1 /', 2 I X'-1 - x,
if; ~- -1 -- -31', I -3 _ l'i-1 .

3 Xi 1 - X,] , .\; 1 - X,_I

Pl'oo.f Since

formula (a) follows from

(0,(£)
J}(x" 1 •.\' .•.Y, Il(x - T)

X, I -- \"",
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according to Peano's theorem on the representation of linear functionals, cf.
Werner:Schaback [9, example 4.5]. Formula (b) is a direct consequence of (a).

(2.2) LEMMA. Let r E IR". T~(r) =q. and -p '< -(3 ~•."\ ,; " ,'. u. - p < u.

(a) If r, = -p and ri- 1 . r'-l < u. then

(b) If r i = u and ri-l ,ri+l ::. ~p, then

Proof From (2.\) we have q, = L(Xi+l - X,_l) (q,- --l-- q,) with

qi- = 2 (, p,(x) w;(x) dx
",l'i 1

and
t', 1

qi = 2 f p,(x) Wi(X) dx.
.. J'/

(a) First we consider q, . If we define x = Xi':" (Xi-l ~ Xi) T. TI) =

(p - :,)i(p -- u). and

if 0 ,; T <;: TO •

if TO <: T '-, \.

the assumptions on I' imply pJx) ,;; p(T) for T E [0. I]. Since Wi ::;, 0, we
obtain the inequality

.1

= 2 I p(T)( I - T) dT
• n

= 2 ('ry( \ - T) dT - r(-p ...:... (u - p)T)( I - T) dTl
.. 0 .. 'll

u - 2p (p .:.. y)2 I (p _ y)3
---- -- ---- - ----- = c - v

3 p - u 3 (p - u)2 1 , .

In a similar way we get

I
-~~-q.- <::" ('1 -- ',.I.
X, -- "i-l '
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This yields

L HOR"l '>,(,

if, - (L\, I - .\,)
X, I -~ x, 1

y) ( I

(b) First we consider if, . If we denne .\
((J- ;3f( IT - pL

\U - (IT -- pIT.
1-,13,

if 0
if TO T 1.

the assumptions on ,. imply pJx) p(.) for T E [0. I]. Since w,~": O. we
obtain the inequality

1- - .. _.._~ q,
X,.1 - x;

~c :2 ( (" «(J - (a
'. 0

.[

p)T)(1 - T)dT.:..1 - (3(1 - T)(fT)
.. -Ij

In a similar way we get

1
---- - ((, . c~ .

\", 1 - X,

This yields q, : 1'~ .

(2.3) LEMMA. It -$ '. y " i3 alld E'· O. there are numbers p. (7' ;3
such that for 1', ' ('~ ill (2.2) the inequalities

lire U1lid,

E alld
E

Proof If p = t 5 and IT = t3 , we obtain from (2.2)

and

for t -> x.
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(2.4) DEFINITION. For p, a ':> 0 let

K(p, a) = {Crt ,.... r"Y E IR" -p < 1'1 <: a for i = 1.... , n}

and cK(p, a) be the boundary of the cube K(p, a).

235

(2.5) COROLLARY. Ifq E Q,. and -(3 < y < (3. there are numbers p. a :::c' (3
such that

q E T"J2K(p. 0"»

for all :x E [-(3, y].

Proof Since qi > y, there is an E > 0 such that qi - Y :> Eand qi < (liE)
for i == I, ... , n. If p, a ~ (3 are chosen according to (2.3) and l' E 8K(p, a), we
have r, = -p or ri = a for some i = I, .... n. If q = T,(r). then (2.2a)
implies E < q, - Y ::;;: C1 ~ E in the first case and (2.2b) implies (liE) > qi >
C2 ~ (I !E) in the second. Thus we get a contradiction in both cases.

3. THE DEGREE

In this paragraph we show that for q E Q.; the degree deg(T.; , K(p, a), q) of
the mapping Ty is nonzero, if the cube K(p, 0") is chosen appropriately. From
this, theorem 2 is easily deduced.

(3.11 LEM~IA. If'Y E IR and q E Qy , there is a number (3 > . y I such that

deg(LB , K(p, 0"), q) eft 0

for all p, 0" ~ (3.

Proof Let z = (Zl ,.... z,,)T = Ll-1(q) and u* be the natural cubic spline
on [a, b] with knots in X, which interpolates the data (Xi' 2i), i = 0.... , 11 --:- 1.
Let 1'* = (r~, ... , r~), 1'( = D2U*(Xi) for i = 1.. .. , n. and ,8 > maxI,;;:I,;::rl ! rt ; .
Then for IX = -(3 we have S,(r*) = u* and T,,(r"') = q. Since (2.1 b) applies
for l' E K«(3, 0"), the mapping T, is linear on K(f3, 0"). The matrix corresponding
to T~ is diagonally dominant. therefore T, is regular and 1'* is the unique
solution l' of the equation T,(r) = q in the cube K(/3, a). From an elementary
property of the degree we obtain

deg(T" /((3, 0"). q) E {+ I, -I},

cf. Ortega and Rheinboldt [6, 6.1.2]. It follows that q ~ T~(K(p. 0") - K«(3, a».
For otherwise, we have two solutions of problem A,2 according to (1.8),
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namely u' S,(r') \\ith,.· ',K(!~. a). i.e.. -;~, 1'; "for i 1..... 11. and

on the other hand li S,(r) lor some I' ,C' K(p. a) - K(;:3, a), i.e .. r --!~

or 1', (5 ;3 for some i" I..... II. Consequently we have for fiX nCr ')

and /' nCr)

so u' and u are distinct. \\ hich contradicts theorem I. From the excision
theorem. cf. Ortega and Rheinboldt [6, 6.2.8], it then follows

deg(T,. K(p. a). q) 'deg(T,. K(i~. a). q) •• O.

(3.2) COROLLARY. if j! ",,]t and q E Q". there £Ire numbers p. (J " y ,

such that

deg( T . . K(p. a), q) ~ 0:

equation T.(I') = q has a solution r :=' K(p. a).

Proof Let (3 y be chosen according to (3.1) and p. (j ,',' ;~ as in (2.5).

Since the mapping T: [-.'3. :/] , K(p. a) -->- iR" is continuous. we can apply
the theorem on the homotopy invariance of the degree. cf. Ortega: Rheinboldt
[6. 6.2.2]. From (2.5) and (3.1) \\e deduce that the degree is nonzero. The
solvability of the operator equation follows from Kronecker's theorem. cf.
Ortega Rheinboldt [6.6.3.1].

Proof of theorcm 2. From theorem 1 and (1.6) we have the existence and
uniqueness of a ,olution and the sufficiency of condition C~. For the demon
stration of the necessity of C~. let q = J(.::-) E Q" and u be the solution of
.4}. From (3.2) there is a solution of the equation TAr) • (f. Therefore. (1.8)

implies that a ~= SAr) solves problem AJ Since this solution is unique. we
have Ii = u. For II = n(r):=' p2 we have r.(p) =~ u. i.e. D~u =. p,. . This means
that C ~ is satisfied. Evidently fJ. is a polygonal function on [a. b] having at
most m(n) knots. Therefore. u is a cubic spline. From (2.1) it is easily seen
that the solution of the equation Ty(r) = q is in the open set R" of those
r E iR' which satisfy 1"-1 'y or r,_l / f if r, 0::; y. i I, .... n. Since the
spline u is unique. the function fI" = D~u and the vector r. 1'/ ~ peri) are
uniquely determined. Therefore. T : R, -,~ Q.,' is a continuom one-to-one
mapping. The domain invariance theorem. cf. Deimling [I. Theorem II. 3].
implies the continuity of r;t. Hence. u ~ S." T,'l J(:) depends continuous
lyon .::-.
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